ACTAX

Объявление

Мой сайт перешёл на домен ACTAXoff.ru

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » ACTAX » Прочее » Материаловедение


Материаловедение

Сообщений 1 страница 2 из 2

1

Задание 1.

1.  Начертите диаграмму состояния для случая ограниченной растворимости компонентов в твердом виде. Укажите структурные составляющие во всех областях этой диаграммы и опишите строение типичных сплавов различного состава, встречающихся в этой системе.
Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии

Диаграмма состояния и кривые охлаждения типичных сплавов системы представлены на рис 1.
1. Количество компонентов: К = 2 (компоненты А и В);
2. Число фаз: f = 3 (жидкая фаза и кристаллы твердых растворов  (раствор компонента В в компоненте А) и  ( раствор компонента А в компоненте В));
3. Основные линии диаграммы:
  линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке;
  линия солидус аdcfb, состоит из трех участков;
  dm – линия предельной концентрации компонента В в компоненте А;
  fn – линия предельной концентрации компонента А в компоненте В.
4. Типовые сплавы системы.
При концентрации компонентов, не превышающей предельных значений (на участках Аm и nВ), сплавы кристаллизуются аналогично сплавам твердым растворам с неограниченной растворимостью, см кривую охлаждения сплава I на рис. 1б. При концентрации компонентов, превышающей предельные значения (на участке dcf), сплавы кристаллизуются аналогично сплавам механическим смесям, см. кривую охлаждения сплава II на рис. 1 б.

Рис. 1 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (а) и кривые охлаждения типичных сплавов (б)

Сплав с концентрацией компонентов, соответствующей точке с, является эвтектическим сплавом. Сплав состоит из мелкодисперсных кристаллов твердых растворов  и  , эвт. (кр. тв. р-ра  + кр. тв. р-ра  )
Кристаллы компонентов в чистом виде ни в одном из сплавов не присутствуют.

На кривой охлаждения II в точке 1 отмечается перегиб, связанный с уменьшением скорости охлаждения вследствие выделения скрытой теплоты  кристаллизации. Процесс кристаллизации будет происходить в интервале температур,  так как система имеет одну степень свободы (С = 2 + 1 – 2 = 1).
Состав кристаллов твердого раствора в условиях равновесия определяется точками пересечения коноды с линией солидус, а остающейся жидкости – точками пересечения коноды с линией солидус.  Количество жидкой и твердой фазы определяют по правилу отрезков.
Процесс кристаллизации эвтектики протекает при постоянной температуре, т.к. согласно правилу фаз при одновременном существовании трех фаз постоянного состава система нонвариантна (С = 2 + 1 – 3 = 0). На кривой охлаждения при кристаллизации эвтектики образуется площадка. Следовательно, после затвердения сплав состоит из первичных кристаллов    и эвтектики   +  . Любой доэвтектический сплав имеет те же структурные состовляющие.

Задание 2

2. Волочение медной проволоки  проходят в несколько переходов. В некоторых случаях проволока на последних переходах разрывается. Объясните причину разрыва и укажите способ его предупреждения.
Волочением называется способ обработки металла давлением, при котором обрабатываемый металл в виде полосы с одинаковым поперечным сечением вводится в канал волочильного инструмента и протягивается
(проволакивается) через него. Этот канал имеет поперечные сечения, одинаковые по своей форме или близкие к форме поперечного сечения протягиваемого металла, но плавно уменьшающиеся от места входа металла в инструмент к месту его выхода. Перед волочением на специальном станке заостряют передний конец полосы, предназначенной для обработки, с таким расчетом, чтобы конец легко входил в волоку и частично выходил с ее противоположной стороны. Этот конец захватывают специальным механизмом и протягивают.
В некоторых специальных случаях, когда деформируемый металл обладает недостаточной пластичностью, при комнатной температуре или высоким сопротивлением деформированию, волочение ведут в предварительно нагретом состоянии. Например, при волочении цинковой проволоки для увеличения пластичности заготовки ее предварительно подогревают до 80—90°, погружая моток в нагретую воду. В очаге деформации температура проволоки доходит до 120—150°, т. е. до температуры, при которой образуется максимальное количество систем скольжения.
Твердые и малопластичные сплавы (например, легированная сталь, нихром, бронза, вольфрам и т. п.), а также малопрочные металлы (например, свинец), протягивают с малыми скоростями. Наибольшие скорости применяют при волочении медной проволоки
Основными недостатками этого метода нагружения, препятствующими его массовому применению, являются: понижение пластичности обрабатываемого металла и необходимость после каждого сравнительно небольшого растяжения подвергать обрабатываемый металл отжигу.
При обычном методе волочения частые отжиги не являются необходимыми; так, например, медь можно протягивать без отжига с суммарной деформацией, доходящей до 99% (20—25 переходов). Однако если отсутствуют волоки или имеются другие препятствия применению обычного метода волочения, «бесфильерное волочение» может дать надлежащие технические результаты.

Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация

Деформированный металл находится в неравновесном состоянии. Переход к равновесному состоянию связан с уменьшением искажений в кристаллической решетке, снятием напряжений, что определяется возможностью перемещения атомов.
При низких температурах подвижность атомов мала, поэтому состояние наклепа может сохраняться неограниченно долго.
При повышении температуры металла в процессе нагрева после пластической деформации диффузия атомов увеличивается и начинают действовать процессы разупрочнения, приводящие металл в более равновесное состояние – возврат и рекристаллизация.
Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решетки
Процесс частичного разупрочнения и восстановления свойств называется отдыхом (первая стадия возврата). Имеет место при температуре
..
Возврат уменьшает искажение кристаллической решетки, но не влияет на размеры и форму зерен и не препятствует образованию текстуры деформации.
Полигонизация – процесс деления зерен на части: фрагменты, полигоны в результате скольжения и переползания дислокаций.
При температурах возврата возможна группировка дислокаций одинаковых знаков в стенки, деление зерна малоугловыми границами (рис. 2).
В полигонизированном состоянии кристалл обладает меньшей энергией, поэтому образование полигонов — процесс энергетически выгодный.
Процесс протекает при небольших степенях пластической деформации. В результате понижается прочность на (10…15) % и повышается пластичность (рис.3). Границы полигонов мигрируют в сторону большей объемной плотности дислокаций, присоединяя новые дислокации, благодаря чему углы разориентировки зерен увеличиваются (зерна аналогичны зернам, образующимся при рекристаллизации). Изменений в микроструктуре не наблюдается (рис.4 а). Температура начала полигонизации не является постоянной. Скорость процесса зависит от природы металла, содержания примесей, степени предшествующей деформации.

При нагреве до достаточно высоких температур подвижность атомов возрастает и происходит рекристаллизация.
Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.
Нагрев металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств. Нагрев приводит к резкому снижению прочности при одновременном возрастании пластичности. Также снижается электросопротивление и повышается теплопроводность.
1 стадия – первичная рекристаллизация (обработки) заключается в образовании центров кристаллизации и росте новых равновесных зерен с неискаженной кристаллической решеткой. Новые зерна возникают у границ старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен.
Движущей силой первичной рекристаллизации является энергия, аккумулированная в наклепанном металле. Система стремится перейти в устойчивое состояние с неискаженной кристаллической решеткой.
2 стадия – собирательная рекристаллизация заключается в росте образовавшихся новых зерен.
Движущей силой является поверхностная энергия зерен. При мелких зернах поверхность раздела большая, поэтому имеется большой запас поверхностной энергии. При укрупнении зерен общая протяженность границ уменьшается, и система переходит в более равновесное состояние.
Температура начала рекристаллизации связана с температурой плавления
,
для металлов 
для твердых растворов 
для металлов высокой чистоты 
На свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. В результате образования крупных зерен при нагреве до температуры t1 начинает понижаться прочность и, особенно значительно, пластичность металла.
Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации (рис. 5).

С повышением температуры происходит укрупнение зерен, с увеличением времени выдержки зерна также укрупняются. Наиболее крупные зерна образуются после незначительной предварительной деформации 3…10 %. Такую деформацию называют критической. И такая деформация нежелательна перед проведением рекристаллизационного отжига.
Практически рекристаллизационный отжиг проводят дпя малоуглеродистых сталей при температуре 600…700oС, для латуней и бронз – 560…700oС, для алюминевых сплавов – 350…450oС, для титановых сплавов – 550…750oС.

Задание 3

3.  Вычертите диаграмму состояния железо – карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,5% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
Описание превращений в сплаве, содержащем 0,5 % углерода.
Сплав до точки 1, при температуре 1520 ° будет находится в состоянии жидкого расплава. По правилу фаз, С = к – ф +1. Количество компонентов равно двум (Fe, С).
Ф – количество фаз равно единице (жидкий расплав). Следовательно С = 2, а значит t ҂ const, она понижается. Внутренний фактор концентрация также ҂ const. На кривой охлаждения это отразится в виде наклонной прямой.
В точке 1 из жидкости образуется аустенит. С1 = 2 – 2 + 1 = 1. Число фаз равно двум (жидкий расплав + аустенит). Следовательно t ҂ const, она понижается, но т.к. при кристаллизации аустенита выделяется скрытая теплота процесса Q↑, значит скорость охлаждения уменьшится. На кривой охлаждения это отобразиться в виде более пологой наклонной прямой.
На участке 1-2 происходит кристаллизация аустенита. С 1-2 = 2 – 2 + 1 = 1, присутствуют две фазы. Температура по-прежнему уменьшается.
В точке 2 при температуре 1450 ° заканчивается кристаллизация аустенита. Число фаз становится равным единице и число степеней свободы равно двум. Следовательно, на участке 2 - 3 будет прямая, менее пологая, чем 1-2.
В точке 3 при температуре 785 ° происходит перекристаллизация аустенита в феррит. Этот процесс обусловлен полиморфным превращением железа Fe. Число фаз будет равно 2 (аустенит + феррит). С 3 = 2 – 2 + 1 = 1. Следовательно,  t ҂ const, она понижается, но т.к. при кристаллизации аустенита выделяется скрытая теплота процесса Q↑, значит скорость охлаждения уменьшится. На кривой охлаждения это отобразиться в виде более пологой наклонной прямой.
В точке 4 при температуре 727 ° происходят эвтектоидные превращения, которые заключаются в том, что аустенит при температуре  727 ° перекристаллизуется с образованием механической смеси феррита и цементита. Эвтектоид называется перлит.

Число фаз будет равно 3. C4 = 2 + 1 – 3 = 0. Следовательно, t = const. На графике это отразится в виде прямой 4 - 4´, параллельной оси времени.
Сплав после точки 4 имеет две фазы, следовательно, t ҂ const, она понижается, но т.к. при кристаллизации аустенита выделяется скрытая теплота процесса Q↑, значит скорость охлаждения уменьшится. На кривой охлаждения это отобразиться в виде более пологой наклонной прямой.
При комнатной температуре это будет феррит + перлит.

Задание 4
4. Вычертите диаграмму изотермического превращения аустенита для стали У8. Нанесите на нее кривую режима изотермической обработки, обеспечивающей получение твердости 200 НВ. Укажите, как этот режим называется, и какая структура получается в этом случае.

Твердости  200 НВ по шкале Бринелля соответствует перлит. Превращение (диффузное) аустенита в перлит происходит при медленном охлаждении.

Превращение связано с диффузией углерода, сопровождается полиморфным превращением  , выделением углерода из аустенита в виде цементита, разрастанием образовавшегося цементита.
В зависимости от степени переохлаждения различают три области превращения. Вначале, с увеличением переохлаждения скорость превращения возрастает, а затем убывает. При температуре 727 oС и ниже 200o С скорость равна нулю. При температуре 200o С равна нулю скорость диффузии углерода.

Образцы нагревают до температуры, при которой структура состоит из однородного аустенита (7700 С). Затем переносят в термостаты с заданной температурой (интервал 25 – 500 С). Превращение аустенита можно легко обнаружить с помощью наблюдений за изменением магнитных характеристик, так как аустенит парамагнитен, а феррит и цементит обладают магнитными свойствами

Задание 5
5. Используя диаграмму состояния железо – цементит, установите температуры нормализации, отжига и закалки для стали У12. Охарактеризуйте эти режимы и термической обработки и опишите структуру и свойства стали после каждого вида обработки.
Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет:
 улучшить обрабатываемость заготовок давлением и резанием;
 исправить структуру сварных швов, перегретой при обработке давлением и литье стали;
 подготовить структуру к последующей термической обработке.
Характерно медленное охлаждение со скоростью 30…100oС/ч.

Отжиг первого рода.

1. Диффузионный (гомогенизирующий) отжиг. Применяется для устранения ликвации, выравнивания химического состава сплава.
В его основе – диффузия. В результате нагрева выравнивается состав, растворяются избыточные карбиды. Применяется, в основном, для легированных сталей.
Температура нагрева зависит от температуры плавления, ТН = 0,8 Тпл.
Продолжительность выдержки:  часов.
2. Рекристаллизационный отжиг проводится для снятия напряжений после холодной пластической деформации.
Температура нагрева связана с температурой плавления: ТН = 0,4 Тпл.
Продолжительность зависит от габаритов изделия.
3. Отжиг для снятия напряжений после горячей обработки (литья, сварки, обработки резанием, когда требуется высокая точность размеров).
Температура нагрева выбирается в зависимости от назначения, находится в широком диапазоне: ТН = 160……700oС.

Отжиг второго рода предназначен для изменения фазового состава.
Температура нагрева и время выдержки обеспечивают нужные структурные превращения. Скорость охлаждения должна быть такой, чтобы успели произойти обратные диффузионные фазовые превращения.
Является подготовительной операцией, которой подвергают отливки, поковки, прокат. Отжиг снижает твердость и прочность, улучшает обрабатываемость резанием средне- и высокоуглеродистых сталей. Измельчая зерно, снижая внутренние напряженияи уменьшая структурную неоднородность способствует повышению пластичности и вязкости.
Неполный, с температурой нагрева на 30…50oС выше критической температуры А1
Температура отжига                 
Тн = 727 + (30…50) = 757…777° С

Применяется для заэвтектоидных сталей. При таком нагреве в структуре сохраняется цементит вторичный, в результате отжига цементит приобретает сферическую форму (сфероидизация). Получению зернистого цементита способствует предшествующая отжигу горячая пластическая деформация, при которой дробится цементитная сетка.Структура с зернистым цементитом лучше обрабатываются и имеют лучшую структуру после закалки. Неполный отжиг является обязательным для инструментальных сталей.

Нормализацией стали называется нагрев доэвтектоидной стали выше точки А с3, эвтектической  - выше точки Ас1, выдержка и последующее охлаждение на воздухе. После нормализации углеродистые стали имеют ту же структуру, что и после отжига,  твердость и прочность стали будет выше, чем при отжиге. Нормализация применяется для устранения крупнозернистой структуры, выравнивания механических свойств. Устраняется цементитная сетка.
Температатура нормализации Тн = 893 + (30…50) = 923…943° С

Конструкционные стали подвергают закалке и отпуску для повышения прочности и твердости, получения высокой пластичности, вязкости и высокой износостойкости, а инструментальные – для повышения твердости и износостойкости.
Верхний предел температур нагрева для заэвтектоидных сталей ограничивается, так как приводит к росту зерна, что снижает прочность и сопротивление хрупкому разрушению.
Основными параметрами являются температура нагрева и скорость охлаждения.

Температура закалки       Тн = 727 + (30…50) = 757…777° С
Применяется для заэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:
.
После охлаждения в структуре остается вторичный цементит, который повышает твердость и износостойкость режущего инструмента.
После полной закалки заэвтектоидных сталей получают дефектную структуру грубоигольчатого мартенсита.
Заэвтектоидные стали перед закалкой обязательно подвергают отжигу – сфероидизации, чтобы цементит имел зернистую форму.

+1

2

Контрольная работа по материаловению №1 (из методички)

O.S. вариант 6, скачать:
http://depositfiles.com/files/x84da2yyv

Мой вариант 1, скачать:
http://depositfiles.com/files/u5cuhn8rf

0


Вы здесь » ACTAX » Прочее » Материаловедение